
Standard Form 298 (Rev 8/98) 
Prescribed by ANSI  Std. Z39.18

703-993-4255

W911NF-12-1-0213

61763-NS.1

Final Report

a. REPORT

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

15.  SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17.  LIMITATION OF 
ABSTRACT

15.  NUMBER 
OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

26-08-2015 1-Jun-2012 31-May-2015

Approved for Public Release; Distribution Unlimited

Final Report: Electroencephalogy (EEG) Feedback In Decision-
Making

The goal of this project is to investigate whether Electroencephalogy (EEG) can provide useful feedback when 
training rapid decision-making.  More specifically, EEG will allow us to provide online feedback about the neural 
decision processes occurring during image-recognition training, and in turn will lead to faster decision responses, 
more hits, and fewer false alarms.  A second subgoal is to investigate whether this can be done under free-viewing 
conditions in which eye movements must be made while viewing complex scenes.

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 
of the Army position, policy or decision, unless so designated by other documentation.

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office 
 P.O. Box 12211 
 Research Triangle Park, NC 27709-2211

Brain-Computer Interface, Training, Decision Making

REPORT DOCUMENTATION PAGE

11.  SPONSOR/MONITOR'S REPORT 
NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)
    ARO

8.  PERFORMING ORGANIZATION REPORT 
NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER
Matthew Peterson

Matthew S. Peterson

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection 
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

George Mason University
4400 University Drive, MSN 4C6

Fairfax, VA 22030 -4422



31-May-2015



ABSTRACT

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Final Report: Electroencephalogy (EEG) Feedback In Decision-Making

Report Title

The goal of this project is to investigate whether Electroencephalogy (EEG) can provide useful feedback when training rapid decision-
making.  More specifically, EEG will allow us to provide online feedback about the neural decision processes occurring during image-
recognition training, and in turn will lead to faster decision responses, more hits, and fewer false alarms.  A second subgoal is to investigate 
whether this can be done under free-viewing conditions in which eye movements must be made while viewing complex scenes.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of 
the project to the date of this printing.  List the papers, including journal references, in the 
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

(c) Presentations

Received Paper

TOTAL:

Received Paper

TOTAL:



Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts): 

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 

0.00Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

TOTAL:

Received Paper

TOTAL:

Received Paper

TOTAL:



Books

Number of Manuscripts:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Received Book

TOTAL:

Received Book Chapter

TOTAL:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Eric J. Blumberg 0.50
Mellisa Smith 0.50

1.00

2

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:



Sub Contractors (DD882)

Names of Faculty Supported

Names of Under Graduate students supported

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for 

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work 

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive 

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in 
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue 
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Matthew S. Peterson 0.12

0.12

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

NAME

Total Number:

NAME

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

......

......



Inventions (DD882)

Scientific Progress

Technology Transfer



Final	
  Report	
  
	
  

“Electroencephalogy	
  (EEG)	
  Feedback	
  In	
  Decision-­‐Making”	
  
	
  

August	
  26,	
  2015	
  
	
  
	
  
	
  

Issued	
  by	
  
	
   	
  

Army	
  Research	
  Office	
  
IMOPAT	
  ATO	
  

	
  
	
  

Contract	
  No.	
  W911NF-­‐12-­‐1-­‐0213	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  
Dr.	
  Matthew	
  S.	
  Peterson,	
  Principal	
  Investigator	
  
George	
  Mason	
  University	
  
Psychology	
  Department	
  
ARCH	
  lab	
  
Fairfax,	
  VA	
  22030-­‐3f5	
  
703-­‐993-­‐4255	
  
	
  
	
   	
  
	
  
Reporting	
  Period	
  6/1/11	
  -­‐	
  5/30/15	
  
  



	
   2	
  

Abstract	
  ........................................................................................................................................................................	
  3	
  
Statement	
  of	
  purpose	
  .............................................................................................................................................	
  3	
  
Timeline	
  ...................................................................................................................................................................	
  3	
  

Year	
  1	
  .............................................................................................................................................................................	
  4	
  
Task	
  Evaluation	
  (RSVP	
  vs.	
  single	
  shot)	
  ......................................................................................................	
  4	
  
Electrode	
  evaluation	
  .......................................................................................................................................	
  11	
  
Tuning	
  Evaluation	
  ............................................................................................................................................	
  11	
  
Programming	
  .....................................................................................................................................................	
  12	
  

Year	
  2	
  ..........................................................................................................................................................................	
  12	
  
Software	
  Development	
  ...................................................................................................................................	
  12	
  
Training	
  Experiments	
  .....................................................................................................................................	
  12	
  
EEG	
  Training	
  Experiment	
  1	
  .....................................................................................................................	
  12	
  
EEG	
  Training	
  Experiment	
  2	
  .....................................................................................................................	
  15	
  

Attentional	
  Blink	
  Pre-­‐screener	
  ...................................................................................................................	
  15	
  
Year	
  3	
  ..........................................................................................................................................................................	
  17	
  
EEG	
  Training	
  Experiment	
  3	
  .........................................................................................................................	
  17	
  
Method	
  .............................................................................................................................................................	
  17	
  

EEG	
  Training	
  Experiment	
  4	
  .........................................................................................................................	
  17	
  
Summary	
  ...................................................................................................................................................................	
  18	
  
External	
  Validity	
  trade-­‐off	
  ............................................................................................................................	
  18	
  
Initial	
  RSVP	
  results	
  might	
  have	
  been	
  overly	
  task-­‐dependent.	
  ......................................................	
  19	
  
Variability	
  in	
  individual	
  subject	
  BCI	
  classification	
  .............................................................................	
  19	
  

 

  



	
   3	
  

Abstract	
  
The goal of this project is to investigate whether Electroencephalogy (EEG) can provide useful 
feedback when training rapid decision-making.  More specifically, EEG will allow us to provide 
online feedback about the neural decision processes occurring during image-recognition training, 
and in turn will lead to faster decision responses, more hits, and fewer false alarms.  A second 
subgoal is to investigate whether this can be done under free-viewing conditions in which eye 
movements must be made while viewing complex scenes.  

Statement	
  of	
  purpose	
  
	
  
Our approach to exploring whether an Electroencephalogy-driven Decision Aid (EEG-DA) can 
be used to enhance training has two broad steps.  The first step is to develop a classifier and to 
determine whether is can enhance simple perceptual recognition (presentation of a single 
stimulus at a time) and whether this ability transfers to other stimuli.  The second step is to 
determine whether this can be scaled-up to more complex tasks and environments, such as 
visual search. 
 

Timeline	
  
Year 1. Develop Classifier: Our first goal is to develop an EEG-Based classifier for 

identifying whether an object is recognized or not under laboratory conditions.  This task 
involves several parts, including (1) finding a suitable machine-learning algorithm (e.g. 
support-vector machine, linear discriminate analysis, etc.), (2) determining the minimal 
number of electrodes to minimize set-up time while maximizing classification, (3) finding 
the optimum experimental design to balance task realism with clear signals for 
classifying EEG signals. 

 
Year 2. Evaluate Participant Training.  Our main concern is whether an EEG-DA can be 

used to enhance perceptual training.  One of our original goals was to determine if 
feedback could decrease speed and increase accuracy of classification responses.  
However, based on pilot results from Year 1, measuring speeded responses will not be 
possible due to necessary changes in the training paradigm.  Instead of focusing on 
response speed, we now will focus on enhancing accuracy as stimulus display time (and 
information) is reduced. 

 
Year 3 (past year). Continue to Evaluate Participant Training.  During Year 2, we found 

huge variability in individual differences in regard to EEG classification, and these 
differences are unrelated to behavioral results (i.e. how well subjects performed the task). 
In year 3 we attempted to develop a behavioral prescreener that might predict which 
participants would be easy to classify, but that was unsuccessful.  Instead, we ran 
participants in the training study, and determined whether they received sham or EEG-
DA feedback the second session based on how successful we were at classifying their 
EEG waveforms from the first session.	
  

	
  
Throughout this document we will be using the term training to refer to the process by which 
participants become better at our perceptual identification task though experience with the task 
and stimuli.  So as to prevent confusion, when possible we will use the word tuning to refer to 
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training the pattern-recognition classifier to recognize when an individual is viewing a target, lure, 
or empty scene based on the participant’s EEG/ERP signals. 

Year	
  1	
  

Task	
  Evaluation	
  (RSVP	
  vs.	
  single	
  shot)	
  
Our original approach was to mimic the stimulus presentation technique used by ROC-V, 

which we will call the one-shot approach.  We chose the one-shot approach because it is not 
only similar to the current ROC-V training used by war-fighters, but also because it mimics what 
an observer would see in a single glance.  In addition, some of the original ERP research 
investigating object classification (Johnson & Olshausen, 2003) used this approach.  Later work  
(Luo & Sajda, 2009) comparing the one-shot approach (CSVP-Continuous Serial Visual 
Presentation, in the authors’ terminology) to the RSVP (Rapid Serial Visual Presentation) 
approach traditionally used in single-trial BCI (Brain-Computer Interface) tasks suggested a 
similar effect-size and scalp distribution.  However, we were unable to get adequate single-trial 
classification using the one-shot technique.  Starting with Experiment 3, we switched to using 
the RSVP technique.  Because of this switch precludes us from gathering response times, we 
will be switched our training approach to emphasize increased accuracy under situations of 
limited information 

Equipment 
The EEG was recorded using a Neuroscan NuAmps amplifier. Recordings were made at 32 

scalp sites (extended 10-20 system) with Ag/AgCl electrodes mounted in an elastic cap. In 
addition, Ag/AgCl electrodes were placed at the left supraorbital and suborbital sites, as well as 
the left and right outer canthal sites, to monitor vertical and horizontal electro-oculographic 
(EOG) activity, respectively. Customized MATLAB scripts (The MathWorks, Natick, MA) and the 
Psychophysics Toolbox were used to present the stimuli, while SCAN 4.01 software 
(Compumedics, North Carolina, USA) was used to digitize the EEG at a sampling frequency of 
500 Hz. All scalp electrodes were referenced to the left mastoid on-line and re-referenced to the 
average of the left and right mastoids following data collection. All electrode impedances were 
maintained below 5 kΩ and recorded with a 70 Hz low-pass filter. All machine learning was 
done offline using BCILab. 

Experiment 1  Our first experiment is based on the cued-target methodology of Johnson & 
Olshausen (2003).  The target stimuli were six different armored vehicles (T-72, 2S3, BMP-1, 
BTR-60PB, BTR-70, Mk 13 Centurion) taken from the ROC-V image database (courtesy of 
RDECOM:NVSED).  Lures consisted of the following six armored vehicles from the ROC-V 
image database: 2S1, LAV LOG, LAV-25, M113, Pz68, and T-34. All images were taken from 
ground level (ROC-V also includes aerial views), and eight different viewing aspects (45°) were 
used for each vehicle.  All images were converted to grayscale. 

The task for the participant was two-alternative-forced-choice (2afc), with cued recognition.  
Prior to the start of each trial, the participant was presented with the name of a cued target (e.g. 
“Is this a BMP-?”).  This remained on the screen for 5 seconds or until the subject pressed the 
spacebar, whichever came first.  Next, the participant was presented with either an image of a 
lure or an image of the cued target.  If the cued target was present, the subject pressed the “/” 
key, and when cued target was absent, the subject pressed the “z” key.  Subjects were 
instructed to respond as quickly and as accurately as possible.  Each experimental session 
consisted of 192 trials, half of which required ‘present’ responses. 

All three participants had trained with the ROC-V mobile app to 95% accuracy before 
participating. 

Results 
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Behavioral results averaged 90% correct, indicating that participants could clearly 
differentiate the targets from the lures. 

For classification of ERP data, we tried two machine-learning algorithms: support-vector 
machine (SVM) and Linear Discriminant Analysis (LDA).  For analysis, we used the windowed-
means paradigm, in which the input vector for a given trial consists of the mean amplitude (for 
each electrode) within a given time window(s).  The best classification occurred with LDA, using 
6 windows (from 100 to 600 msec post-stimulus) and all 32 scalp electrodes. Table 1 shows the 
best and worst classification using 5-fold cross-validation: 

 
Table	
  1	
  

 Hit % FA % A’ d’ 
Best 76% 54% .61 0.61 
Worst 64% 49% .55 0.25 

 
Hit % is the percentage of correct classifications when the target was present. 
FA% (False Alarm) is the percentage of incorrect classifications when a target is absent. 
A’ is a non-parametric estimate of the area under the ROC curve, and is a measure of 

sensitivity that varies between 0 and 1, with 1 being perfect performance 
d’ is a Signal Detection Theory measure of sensitivity measured in z-space. 
 
Although it was encouraging that our hit rates were above chance (50%), our observed false 

alarm rates hovered around chance.  The low A’ and d’ scores reflect poor single-trial 
classification.  Visual inspection of the average waveforms suggested clear differences between 
the target and lure trials in the N200 and P300 region, but the differences were not large enough 
for adequate single-trial classification. 

Experiment 2 
One possible confound in Experiment 1 is that by requiring subjects to respond as quickly as 

possible, motor-driven waveforms might have added noise to the EEG data.  To prevent motor 
components from potentially contaminating the data, we used a prompted task, in which 
subjects were first shown an image for 5 seconds followed by a prompt (e.g. “Is this a BMP-1?”).  
Subjects were instructed to respond as quickly as possible to the prompt by pressing the “z” key 
for correct and the “/” key for incorrect. Because we were interested in recognition of learned 
targets, all analyses were time-locked to image presentation (not to the response). 

Results 
Although our behavioral results remained excellent (>90% correct), single-trial waveform 

classification remained poor, as can be seen in the Table 2. As in Experiment 1, LDA provided 
the best classification among our subjects. 

 
Table	
  2	
  

 Hit % FA % A’ d’ 
Best 64% 54% .55 0.26 
Worst 86% 80% .53 0.24 

 
 
Experiment 3 
Our first two pilot experiments yielded very poor single-trial classification results.  We 

originally chose the single-shot methodology as it most closely mimicked a conventional training 
situation.  Although nearly all BCI paradigms have used a variant of the RSVP technique, there 
was no indication in the literature as to why this was chosen.  Indeed, several papers had 
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suggested that the choice was because it maximized image throughput, and a few traditional 
studies suggested that a single-shot approach would be as effective as RSVP (Johnson & 
Olshausen, 2003; Luo & Sajda, 2009). 

An investigation of the neuroscience literature outside of BCI suggested that single-trial 
classification might be leveraging the attentional-blink (AB) driven p300 effect when the items 
are presented in RSVP.  In RSVP, items are flashed one at a time to the same spatial location 
and at a rapid rate (typically 100msec per item presentation rate). The attentional blink (Chun & 
Potter, 1995; Raymond, Shapiro, & Arnell, 1992) occurs when an individual has to report two 
targets that appear somewhere in an RSVP stream. The second target is more likely to be 
missed if it occurs in a window roughly 200-500 msec after the first target.  The deficit is thought 
to occur because when the second target occurs, mental resources are still processing the first 
target.  Because of the nature of the RSVP stream, there is no visual persistence, and the 
second target is erased before mental resources can be devoted to identifying it. 

Important to us is the finding by McArthur and colleagues (1999) that the size of the 
attentional blink is correlated with the size of the p300 ERP waveform elicited by the first target, 
and that both the behavioral AB deficit (to the second target) and p300 (from the first target) 
become more pronounced as the first target becomes more difficult to identify.  Although none 
of the BCI experiments we researched were designed to investigate the AB, it appeared that the 
AB effect might be magnifying the p300, and in effect increasing the signal-to-noise ratio. 

In the following three experiments, starting with Experiment 3, we adopted a modified RSVP 
technique.  As in Experiment 2 (and like traditional AB experiments), we had subjects respond 
“offline” after the RSVP stream had ended. 

Common Methods for Experiments 3-5 
Each trial consisted of 20 images flashed one-at-a-time for 200 msec each.  Distractors 

consisted of 33 possible background images.  Some of these background images are from the 
ROC-V training set (vehicles were removed from the images by NVESD), whereas the 
remainder came from the USDA NRCS photo gallery (http://photogallery.nrcs.usda.gov).  Each 
target-absent trial consisted of 20 distractor frames, whereas target-present and lure-present 
trials (Experiments 4 and 5) consisted of 19 distractor frames and 1 target or lure frame 
occurring in position 5-15. An example of a target is shown in the left frame of Figure 1.  The 
right frame of Figure 1 shows an example of a distractor image. 

Experiments 3-5 consisted of 432 trials broken into blocks of 72 trials, with each block 
having a single cued target (e.g. “T-72”).  The cue occurred at the beginning of each block of 
trials and consisted of the name of the vehicle as well as cropped examples of the vehicle from 
each aspect ratio. 

For Experiment 3, one-third (144, or 24 per block) of the trials contained a target vehicle and 
required a target-present response. The remaining trials were all target-absent.   

All reported results are 5-fold cross validation using LDA for classification. 

	
  
Figure	
  1 
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Results 
As before, behavioral results were high and averaged over 95% for our three subjects.  As 

can been seen in the Table 3 below, our classification rates for our 3 subjects are greatly 
improved.  In particular, the decreased false alarm rates are encouraging, as high false alarm 
rates can lead users to distrust automated decision aids. (Parasuraman & Wickens, 2008). 

 
Table	
  3	
  

 Hit % FA % A’ d’ 
Best 89% 28% .81 1.8 
Worst 86% 38% .74 1.6 

 
Experiment 4 
Although the results of Experiment 3 are encouraging, to perform the task, subjects were 

only required to detect the presence of a vehicle.  Since our ultimate goal is to provide feedback 
on vehicle identification, this is not sufficient. Experiment 4 was changed to an identification task 
by introducing lures.  One third of the 432 trials contained a target, one third contained a lure, 
and one third contained no vehicles in any of the 20 RSVP frames. Within each block of 72 trials, 
one third of the trials contained the cued target, one third contained a lure, and the remaining 
trials consisted solely of background distractor scenes.  Subjects were told to respond with a 
keypress to indicate if a target or a lure was present, and to withhold a response if the RSVP 
stream consisted solely of background images. 

Results 
Shown in Table 4 are the best and worst 5-fold cross-validation results using an LDA 

classifier for discriminating between a target and a distractor.  As can be seen below, our 
classification results are improved over Experiment 3, with both higher hit and lower false alarm 
rates. 
Table	
  4	
  

 Hit % FA % A’ d’ 
Best 92% 26% .83 2.1 
Worst 89% 29% .80 1.8 

 
Shown below in Table 5 are the classification rates for the targets vs. lures.  Clearly, the 

classifier had a more difficult time discriminating between the ERP waveforms elicited by the 
target and lure trials, but so did our subjects, whose accuracy ranged from 75-85% (33% is 
chance).  Classifier training included all target and all lure trials, without regard for accuracy, 
and the decreased response accuracy meant that the classifier was trained with examples that 
included incorrect responses. 

 
Table	
  5	
  

 Hit % FA % A’ d’ 
Best 56% 40% .58 0.4 
Worst 54% 45% .55 0.23 

 
 

Experiment 5 
The lures used in Experiment 4 were chosen because they are historically known to be 

confusable with the targets, and we wanted to maximize task difficulty.  For Experiment 5, we 
chose lures that were easier to discriminate from the target set, with the reasoning being that 
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the initial training procedure would include more easily discriminable stimuli, with discrimination 
difficulty increasing as the trainee became more proficient. These easier lures include the 1S12 
Longtrack, Bluebird Bus, Ford 6610 Tractor, YAZ-463, Z-Turn mower, and ZIL-157. 

Experiment 5 was otherwise identical to Experiment 4. 
 
Results 
Shown in Table 6 are the best and worst 5-fold cross-validation results using an LDA 

classifier for discriminating between a target and a distractor.  As can be seen below, we are 
able to easily discriminate between target and distractor stimuli based on ERP recordings. 

 
Table	
  6	
  

 Hit % FA % A’ d’ 
Best 96% 14% .91 2.8 
Worst 89% 22% .84 2.0 

Shown below are graphs of electrode FC3 for a single participant. The top graph (Figure 2) 
is for distractors and the bottom graph (Figure 3) is for waveforms in response to targets. The 
top part of each graph shows color intensity plots for each stimulus presentation.  Along the 
bottom is the average waveform corresponding to the top intensity plot.  The periodic 
waveforms due to stimulus presentation (200msec, or 5 Hz) are easily seen in the plot for the 
distractors. 

	
  
Figure	
  2	
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Figure	
  3	
  

In comparing Figure 2 (distractors) to Figure 3 (targets), one can easily visualize the 
difference in waveforms, particularly in the regions peaking 200 and 400 msec post-stimulus.  
Shown below in Figure 4 are scalp maps of the weights for the LDA classifier for one participant. 

	
  
Figure	
  4 
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More important than discriminating between targets and empty backgrounds is the ability to 

discriminate between targets and lures.  Behavioral accuracy for this task was near 100% for all 
subjects. Although we are satisfied with the classification rates (see Table 7), we would prefer to 
have a lower false alarm rate. Methods of dealing with the false alarm rate will be discussed in 
the Plans for Coming Year section. 

 
Table	
  7	
  

 Hit % FA % A’ d’ 
Best 79% 24% .78 1.5 
Worst 76% 31% .73 1.2 

 
Figure 5 shows electrode FC3 for one subject when viewing lures, and Figure 6 shows the 

scalp distribution of LDA weights for targets vs. lures.  The largest difference between targets 
and lures at electrode site FC3 appear to be between 350-450 msec for this subject. 

 

	
  
Figure	
  4	
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Figure	
  5	
  

Electrode	
  evaluation	
  
Because our subjects will need to come back for multiple sessions of training, we decided to 

evaluate the feasibility of using fewer electrodes in order to speed up preparation time.  Shown 
below are the maximum and minimum classification sensitivity scores across our subjects for an 
earlier version of our experiments.  We decided that the trade-off for using fewer channels was 
unacceptable. 
	
  

	
  
Figure	
  6	
  

Tuning	
  Evaluation	
  
In addition to evaluating how many channels were necessary to get sufficient classification, 

we also evaluated how many trials would be needed to adequately tune the classifier for the 
training regimen.  To prevent confusion, we use the term ‘tuning’ to refer to classifier 
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optimization (this is traditionally called “training” in the literature), and “training” to refer to the 
learning experiments that the subjects will undergo.  In other words, we train the people and 
tune the classifier.  To do this, we first mined our datasets and later confirmed the results with 
naive subjects.  Specifically, we first tuned the classifier on various amounts of data (the first 
10%, 25%, or 50%) and tested on the remaining 50% of the data from a single session.  We 
found that we would need roughly 216 trials (3 blocks of 72 trials, or roughly 20 minutes of data) 
to tune a classifier that could adequately generalize to the rest of the dataset for targets vs. 
lures (A’ ranging from 77-73%).  The majority of misclassifications were false alarms. 

Programming	
  
One of the hurdles we had to overcome was how to provide feedback in real-time to the 

participants.  With help from employees at MITRE, we adapted their code for the BrainVision 
system so that it will work with our Neuroscan system. This code allows the Neuroscan Scan 
software (running on a host PC) to send EEG data and markers over TCP/IP to a MacBook Pro 
hosting Matlab and BCILab. In the case of EEG feedback condition, the MacBook classifies the 
EEG data in realtime and sends the classification results to the host computer at the end of 
each trial. For the sham feedback condition, the Macbook pseudo-randomly generates feedback 
when it receives an end-of-trial marker. 

Year	
  2	
  

Software	
  Development	
  
Although we are using BCI-Lab for developing our classifier, one problem was that with our 

system (Neuroscan NuAmps), BCI-Lab only allowed offline processing and did not provide a 
plug-in for the real-time streaming and analysis of data from our EEG system.  We developed a 
series of Matlab Neuroscan plug-ins for BCILab and submitted the open source code to the 
BCILab depository.	
  

Training	
  Experiments	
  

EEG	
  Training	
  Experiment	
  1	
  
 
Before starting the feedback-training experiment, we wanted to establish several baselines.  

These include:  
 
• Learning Curves: Without feedback, how quickly do subjects learn the training stimuli?  

This is important because we need a task that is sufficiently difficult so that feedback-training 
has room to potentially improve performance. 

 
• Day-to-day classification: How much day-to-day variability is there in classifying the EEG 

signals?  This is important, as too much variability (e.g. high-quality feedback one day, poor 
quality the next) could affect the trainee’s trust in the automated feedback (Parasuraman & 
Wickens, 2008). 

 
• Classification Generalizability: How well would a classification solution derived from an 

early session work for later sessions?  Because classification needs a large body of data, it 
would be ideal if a classification solution from the first day of training could be used on 
subsequent days, with at most only minor updating each day.  The alternative would mean that 
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before feedback-training could occur, each session would require extra blocks of trials to gather 
data to tune the classifier. 

 
We ran 4 naive subjects over 4 sessions, while gathering both behavioral and EEG data 

during each session.  Each session contained 432 trials, with one third of the trials containing a 
target, one third containing a lure, and one third containing no vehicles in any of the 20 RSVP 
frames, with each frame presented for a duration of 200 msec. Within each block of 72 trials, 
one third of the trials contained the cued target, one third contained a lure (non-target vehicle), 
and the remaining trials consisted solely of background distractor scenes.  Each block of trials 
had the same target vehicle (e.g. T-72), and the vehicle could be presented in any of eight 
aspects (rotations). Figure	
  1 shows examples of target and background scenes. Subjects were 
told to respond with separate key presses to indicate if a target or a lure was present, and to 
withhold a response if the RSVP stream consisted solely of background images. To become 
familiar with the targets, on the first day subjects were allowed to study the targets while the 
EEG cap was being fitted (approximately 20-30 minutes) using ROC-V Mobile on an Android 
phone. 
 

Figure	
  7 shows the behavior results over the 4 sessions measured by A’, an unbiased 
measure of accuracy that takes both hits and correct rejections into account.  Overall accuracy 
is quite high and near ceiling, indicating that future experiments will require either a faster 
presentation rate or a shorter presentation duration in order to degrade performance and make 
the task more difficult.  This near-ceiling performance by the naïve subjects surprised us, as all 
prior pilot subjects had extensive experience with the stimuli, including one subject who had 
written and debugged the presentation software as well as another subject who was involved in 
editing the images. 

 

	
  
Figure	
  7 

Figure	
  8 shows the EEG classifications averaged over the four subjects for each session.  
Specifically, these are the grand average 5-fold cross-validation results using an LDA classifier 
for discriminating between targets and a distractors or a targets and lures. Overall, our 
classification accuracies are much lower than expected. Specifically, Tables 6 and 7 from 
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Experiment 5 from Year 1 show classification (A’) rates that ranged between 0.91 and 0.84 for 
targets vs. distractor backgrounds and between 0.78 and 0.73 for targets vs. lures. 

	
  
Figure	
  8 

Training Experiment 1 (Year 2) and Experiment 5 (Year 1) were identical in methodology, 
with the only difference being that the 3 subjects participating in Experiment 5 had prior 
extensive experience with the stimuli. Clearly behavioral accuracy is not a good predictor of 
classification accuracy, as the subjects in the current experiment performed near ceiling in the 
first session.  We hypothesized that the superior classification rates might be due to over-
training with the stimuli, and tested that in Training Experiment 2 by over-training two naïve 
participants. 

In addition, we also examined how well the classification solutions generalized from day-to-
day.  Figure	
  9 shows the average classifications for all four days, with each grouped line 
representing a separate day of training.  The first point on each line (day one has only one 
point) illustrates the average classification based on that session’s EEG data, and is identical to 
the target vs. backgrounds data in Figure	
  8. Each subsequent point shows how a classifier 
trained using a previous session’s data classified the current session.  For example, the second 
point from the left (blue circle) shows how well a classifier trained on session two’s data 
classified the data from the same session. The third point (orange square) shows how well a 
classifier trained on day 1 classified data from day 2.  Two overall effects are apparent.  First, 
classification accuracy is overwhelming determined by the session, with later sessions (i.e. days 
3 and 4) showing much better classification than the earlier sessions (this can also be observed 
in Figure	
  8). The second overall effect is that the data set that the classifier was trained on does 
not appear to matter.  For example, the four points on the right-hand side of the graph all 
represent classification accuracy for the data from session 4. In comparing those four points, it 
can be seen that classifiers tuned with data from days 1-3 worked as well as a classifier trained 
with data from day 4.  Although overall classification is poor, it nonetheless suggests that we 
might be possible to use classifiers from previous sessions for the feedback experiment without 
having to retrain (tune) the classifier for each session. 
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Figure	
  9 

EEG	
  Training	
  Experiment	
  2	
  
	
  

To determine whether over-training was the cause of our previously higher classification 
rates, two naïve subjects trained for four days on the stimulus set.  When tested in the RSVP 
experiment on the fifth day, both achieved behavioral performance close to or at ceiling: A’ of 
0.98 and 1.00. However, their EEG classification was markedly lower: A’ of 0.55 and 0.61 for 
discriminating between target and distractor backgrounds, and A’ of 0.54 and 0.53 for targets vs. 
lures.  This suggests that overtraining is not a factor in classifier performance, but instead 
classifier performance might be due to individual differences. 

Attentional	
  Blink	
  Pre-­‐screener	
  
 
Individual differences in brain morphology, skin conductance, and skull shape can all lead to 

varying levels of signal-to-noise in regard to ERPs.  The goal of the next experiment was to see 
if we could devise a quick behavioral pre-screener that would allow us to cherry-pick subjects 
that are likely to show good EEG/ERP classification. 

 
One candidate for a behavioral marker is the attentional blink (AB, Chun & Potter, 1995).  

The attentional blink can occur when trying to identify two targets presented in an RSVP stream.  
Specifically, the second target is often missed when it occurs in a window 200-500 msec after 
the first target. This occurs because the second target is presented while the first target is being 
mentally processed.  Because the stimuli are presented using RSVP, this prevents visual 
persistence and the second target is masked by later stimuli. 
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For our purposes, the size of the attentional blink appears to be correlated with the size of 
the p300 ERP component (McArthur et al., 1999), which, based on last year’s data, appears to 
be one of the components that classifiers are sensitive to in our task. However, what want to 
know is slightly different: does the size of the attentional blink correlate with the strength of EEG 
classification? In the attentional blink p300 literature, the EEG signals are time-locked to the 
presentation of either the first or second target, which is identical to what are doing when we 
time-lock our classification signals to the stimulus presentation in our RSVP training 
experiments.  

To this end, we replicated the experiment of Sessa et al. (2007).  In their experiment they 
presented a series of RSVP streams containing white letters on a gray background at the rate of 
83 msec per item.  The first target (T1), when present, was a black numeral.  The second target 
(T2) was the letter ‘E’.  Participants’ goal was to identify the black numeral and report whether 
an ‘E’ had appeared or not.   A key to this experiment was that when the ‘E’ was present (20% 
of the time), it was either at lag 3 (two intervening items, or 250 msec after the first target) or at 
lag 7 (581 after the target).  When T2 is presented at lag 3, it is in the prime spot for the AB to 
occur.  In their experiment, T2 was either the last item in the stream, meaning it was not masked 
by a following item (unmasked), or it was the penultimate item in the RSVP stream (masked).  In 
their experiment, the AB, as measured by the T2 accuracy difference between lag 7 and lag 3, 
was larger for the more difficult masked T2. 

We ran five participants in the AB experiment, and achieved a nice range of behavioral 
results, with the magnitude of the attentional blink varying between 0 and 0.7 for the unmasked 
condition (mean = 0.29) and between 0 and 0.9 for the masked condition (mean = 0.23).  
Unfortunately, we found no correlation between the size of the AB and classification accuracy 
(see Figure	
  10). We discuss our plans for future subject screening in the next section. 

 

	
  
Figure	
  10 
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Year	
  3	
  

EEG	
  Training	
  Experiment	
  3	
  

Method	
  
 EEG training Experiment 3 was the first of our studies to examine how giving feedback 
to naïve participants would potentially enhance training over multiple sessions.  Unlike our 
previous experiments, which used lab members as pilot subjects, Training Experiments 3 and 4 
used participants from the George Mason University undergraduate Psychology subject pool. 
Both experiments were 3 days sessions, with feedback (sham or EEG-DA) occurring on the 
second and third days. 

EEG recordings were made on all three days, and like previous experiments, 
participants were allowed to study the test vehicles using ROC-V Mobile on an Android phone 
during EEG cap setup on the first day.  Given the large variability in our ability to classify 
individuals’ EEG waveforms, we decided to triage subjects based on how well we could classify 
their EEG based on the first day’s data.  Given our previous low classification rates, we decided 
to initially set a low threshold (A’ = 0.7) for inclusion in the EEG-DA feedback group (see 
Conclusions section). 

Because our subjects were undergraduate students naïve to the stimuli and task, we 
decided train them using the 200 msec display time used in Training Experiment 1.  However, 
as can be seen in Figure	
  11, this task was too easy and subjects’ performance was near ceiling.  
Because of this, we decided to switch to a faster presentation rate (100 msec/item) for Training 
Experiment 4.  Because none of the participants’ EEGs were classified with an A’ > .7 on the 
first day, the participants in this experiment all received sham feedback on days 2 and 3. 
 
	
  

	
  
Figure	
  11	
  

EEG	
  Training	
  Experiment	
  4	
  
	
  

EEG Training Experiment 4 was identical to the previous experiment, except that the 
presentation duration of each image was shortened from 200 to 100 msec.  In addition, we 
decided to swap the lures for a more difficult set of armored lures (e.g. T-34 tank instead of 
Bluebird Bus), as we thought that Experiment 3 might have become a presence/absence 
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judgment (armored vehicle present or not). As can be seen in Figure	
  12, this had the benefit of 
bringing the behavioral performance down to an acceptable level (70-75% accuracy) that would 
allow potential training benefits to be observed.  Unfortunately, we had two problems occur that 
prevented us from collecting an adequate amount of data before the end of the final reporting 
period.  The first issue was an intermittent bug in the feedback software that would cause a 
crash midway through an EEG-DA feedback session (this only occurred at the higher 
presentation rate).  The second problem was convincing participants to come back for a third 
session, which was made worse by the end of the spring semester. Figure	
  12 shows the results 
for only the sham feedback sessions. 

	
  
Figure	
  12	
  

Summary	
  
The overall goal of this research was to use a brain-computer interface (BCI) during a 

perceptual training paradigm to determine whether this could decrease the speed and increase 
the accuracy of making perceptual decisions compared to baseline conditions with no feedback.  
However, success was dependent on adapting several tasks and methods in a way that had not 
been tried before, and the difficulty in adapting these tasks and methods negatively impacted 
our research.  In particular, the lack of turn-key system meant that we spent a large amount of 
time on software development.  Although we had previous experience using BCI-lab to analyze 
data offline, when we started the project it was not capable of communicating in real-time with 
our Neuroscan hardware.  In collaboration with members from other labs, we were able to write 
a Matlab plug-in for BCI lab that was compatible with the Neuroscan system (although bugs did 
become apparent during the higher presentation rates used during Spring 2015). 

External	
  Validity	
  trade-­‐off	
  
Our initial goal was to use the one-shot paradigm, in which a single stimulus display is 

presented and the participant is required to respond as quickly and accurately as possible.  Our 
initial review of the literature (Luo & Sajda, 2009; Johnson & Olshausen 2003) suggested that 
the effect size using the one-short technique was similar to the RSVP technique, and therefore it 
would be a good candidate for single-trial classification.  Although we found grand-averaged 
ERPs to the targets using the one-shot paradigm, the signal-to-noise ratio was low enough that 
we were unable to get adequate single-trial classification.  Therefore we turned to using the 
RSVP technique as used in a multitude of image-triage experiments.  The downside is that the 
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external validity is greatly decreased (the one-shot paradigm mimics what a person might see in 
a single glance, whereas the RSVP technique is completely artificial), and manual response 
times are no longer meaningful.	
  

Initial	
  RSVP	
  results	
  might	
  have	
  been	
  overly	
  task-­‐dependent.	
  
RSVP BCI might work best when the task is to detect the presence of a member of a high-

level category.  For example, Touryan and colleagues (2014) were able to consistently get 
stimulus-locked classification scores between .75 and .85 (A’) when the task was to detect the 
presence of a high-level category (e.g. “stairs”, “doors”, “chairs”).  Our initial high classification 
scores were for discriminating between the presence or absence of the target (e.g. T-72 target 
vs. empty distractor scene), and discrimination was slightly worse when trying to discriminate 
between trials that contained an armored target (e.g. “T-72”) and an unarmored lure (e.g. school 
bus). 

However, when we changed the task to discriminate between items that were part of the 
same high-level category (e.g. target is armored T-72 and lure is armored M1-Abrams, Training 
Experiment 4), then BCI classification fell to levels that were closer to 0.6 (A’), which is too 
inaccurate to use to provide meaningful feedback. This was particularly problematic, as using 
unarmored lures changes the task from “is there a T-72 present?” to “Is there an armored 
vehicle present?”, and this was reflected in the high-behavioral accuracy. For an EEG-DA to be 
useful, it must provide classification that is more accurate than individuals can manage alone. In 
addition, high initial accuracy scores are problematic, as they allow for little room for training-
based improvement. 

Variability	
  in	
  individual	
  subject	
  BCI	
  classification	
  
In addition, there was a large effect of individual differences on BCI performance (see 

Figure	
  13).  Our initial BCI performance after we switched to the RSVP technique yielded A’ 
scores that were extremely encouraging (target vs. background A’ ranged from 0.84-0.91, target 
vs. lure ranged from 0.73-0.83). However, we were not able to replicate this success with future 
participants. We spent a large part of our effort trying to track down causes (e.g. over-familiarity 
with stimuli) and markers (e.g. attentional blink magnitude) for these individual differences. 
Instead, it might have been more fruitful if we refined our presentation technique to try to 
maximize the p300 effect, perhaps by increasing the number of distractor scenes in each RSVP 
stream and decreasing the number of streams that contained a target.  Both of these would 
have increased the rarity of the target, which is correlated with the magnitude of the p300 
component, and might have allowed better BCI single-trial classification.	
  

	
  
Figure	
  13	
  

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.45" 0.5" 0.55" 0.6" 0.65" 0.7" 0.75" 0.8" 0.85" 0.9" 0.95" 1"

%"

A'"

Distribu,on"of"A'"across"RSVP"experiments"(n=106)"



	
   20	
  

On the other hand, we did find individuals’ classification solutions derived from prior 
session data worked as well on subsequent sessions data.  These solutions did not transfer 
from person-to-person, but only worked well when they were used with subsequent sessions for 
the same individual.  That is, a classification solution for person A’s first session did not work for 
person B, but did work as well for person A’s second session.  This suggests that, had our 
presentation paradigm allowed us to get consistently high classification rates on the first session, 
that we would have been able to use solutions generated from previous sessions for training 
during subsequent sessions. This would have been key for using BCI as a training tool.  
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